ОСОБЛИВОСТІ СПЕКТРУ ЖИРНИХ КИСЛОТ ЛІПІДНИХ ФРАКЦІЙ СИРОВАТКИ КРОВІ ХВОРИХ НА ЦУКРОВИЙ ДІАБЕТ 2 ТИПУ З РІЗНИМИ ТИПАМИ ІЗОЛЬОВАНОЇ ДИСЛІПІДЕМІЇ

DOI: https://doi.org/10.31435/rsglobal_sr/01062018/5615

Кушнарьова Н. М.

Україна, м. Київ, ДУ «Інститут ендокринології та обміну речовин ім. В. П. Комісаренка»

ПОЛНЫЙ ТЕКСТ PDF

Abstract.

In 60 type 2 diabetic patients with different forms of isolated dyslipidemia, investigated serum lipid profile and fatty acid (FA) spectrum in lipid fractions of free fatty acids, triglycerides and phospholipids. In the groups with isolated hypoalfalipoproteinemia and with isolated hypertriglyceridemia, we found reducing of unsaturated to saturated FA ratio, that may cause difficulty in absorption and utilization of FA in the form of VLDL as energy substrates. The isolated hypercholesterolemia group showed increasing in relative content of polyunsaturated FA in serum lipid fractions that may indicate a disturbance of active uptake of PUFA by cells, causing a deficiency of these structural components in membranes and increasing the risk of atherogenesis.

Keywords: type 2 diabetes, isolated dislipidemia, serum lipoprotein profile, fatty acid spectrum of serum free fatty acids, triglycerides, phospholipids

References

1. Aguilar-Salinas CA, Olaiz G, Valles V, et al. High prevalence of low HDL cholesterol concentrations and mixed hyperlipidemia in a Mexican nationwide survey // J Lipid Res. 2001; 42 (8): 1298-307.
2. Andersson C, Lyass A, Vasan RS., Massaro JM, D’Agostino RB, Robins SJ, Framingham, Boston, MA. Long-term risk of cardiovascular events across a spectrum of adverse major plasma lipid combinations in the Framingham Heart Study // Am Heart J. 2014;168:878-888.
3. Bartlett J, Predazzi IM, Williams SM. Is Isolated Low HDL-C a CVD Risk Factor?: New Insights from the Framingham Offspring Study // Circ Cardiovasc Qual Outcomes. 2016; 9 (3): 206-212.
4. Calvo MJ, Martínez MS, Torres W, Chávez-Castillo M, Luzardo E, Villasmil N, Salazar J, Velasco M, Bermúdez V. Omega-3 polyunsaturated fatty acids and cardiovascular health: a molecular view into structure and function // Vessel Plus. 2017; Jul 17. [Online First]
5. Cen J, Sargsyan E, Bergsten P. Fatty acids stimulate insulin secretion from human pancreatic islets at fasting glucose concentrations via mitochondria-dependent and -independent mechanisms // Nutr Metab (Lond). 2016; 13 (1): 59.
6. Chaudhury D, Aggarwal A. Diabetic Dyslipidemia: Current Concepts in Pathophysiology and Management // J Clin Diagn Res. 2018; 12 (1): OE06-OE09.
7. Djelilovic-Vranic, J.; Alajbegovic, A.; Zelija-Asimi, V.; Niksic, M.; Tiric-Campara, M.; Salcic, S.; Celo, A. Predilection role diabetes mellitus and dyslipidemia in the onset of ischemic stroke. Med. Arch. 2013, 67, 120–123.
8. Hayden MR, Tyagi SC. Isolated low high density lipoprotein-cholesterol (HDL-C): implications of global risk reduction. Case report and systematic scientific review // Cardiovasc. Diabetol. 2005; 4: 1-15.
9. Jayarama N, Lakshmaiah MR. Prevalence and pattern of dyslipidemia in type 2 diabetes mellitus patients in a rural tertiary care centre, southern India // Glob. J. Med. Public Health; 2012, 1: 24–27.
10. Kalra S, Priya G. Lipocrinology – the relationship between lipids and endocrine function // Drugs in Context 2018; 7: 212514.
11. Lee H, Park WJ. Unsaturated fatty acids, desaturases, and human health // J. Med. Food. 2014; 17: 189-197.
12. Li L, Wang C, Yang H, Liu S, Lu Y, Fu P, Liu J. Metabolomics reveal mitochondrial and fatty acid metabolism disorders that contribute to the development of DKD in T2DM patients // Mol Biosyst. 2017; 13 (11): 2392-2400.
13. Márk L, Dani G. [Diabetic dyslipidaemia and the atherosclerosis] [Article in Hungarian] // Orv Hetil. 2016;157 (19): 746-752.
14. Martín-Fuentes P, García-Otín A, Calvo L, et al. Atorvastatin decreases stearoyl-CoA desaturase gene expression in THP-1 macrophages incubated with oxidized LDL // Lipids. 2009; 44 (2): 115-123.
15. Nguyen P, Leray V, Diez M, et al. Liver lipid metabolism // J. Anim. Physiol. Anim. Nutr. (Berl). 2008; 9 (3): 272-283.
16. Palomer X, Pizarro-Delgado J, Barroso E1, Vázquez-Carrera M. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus // Trends Endocrinol Metab. 2018; 29 (3): 178-190.
17. Qi L, Ding X, Tang W, et al. Prevalence and Risk Factors Associated with Dyslipidemia in Chongqing, China // Int. J. Environ. Res. Public Health 2015, 12, 13455-13465
18. Ritushri S, Atanu K B, Debasish D. Pattern of Dyslipidemia in Type 2 Diabetic Patients in Southern Odisha // Schol J Appl Med Sci. 2017; 5: 4397 – 4401.
19. Schnell O, Rydén L, Standl E. Current perspectives on cardiovascular outcome trials in diabetes // Cardiovasc Diabetol. 2016; 15 (1): 139.
20. Singh N. K. Isolated trigliceridemia. Metabolic pathways and Metabolic consequences / N. K. Singh // Medicine update. 2008; 18: 302-314.
21. Singh VN. Low HDL Cholesterol (Hypoalphalipoproteinemia) Treatment & Management /; Chief Editor: George T Griffing // MedScape. 2013. http://emedicine.medscape.com/article/127943-overview#a4
22. Titov VN. The phylogenetic theory of general pathology // Klin Lab Diagn 2017; 62 (8): 452-462.
23. Titov VN, PP Malyshev, VA Amelyushkina, et al. The effect of sтatins: activation of lipolysis and absorption by insulin-depended cells lipoproteins of very low density, increasing of bioavailability of polyenoic fatty acids and decreasing of cholesterol of lipoproteins of low density // Klin. Lab. Diagn. 2015; 60 (10): 4-12.
24. Tomkin GH, OwensD. Diabetes and dyslipidemia: characterizing lipoprotein metabolism // Diabetes Metab Syndr Obes. 2017; 10: 333–343.
25. Tosi F, Sartori F, Guarini P, Olivieri O, Martinelli N. Delta-5 and delta-6 desaturases: crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease // Adv. Exp. Med. Biol. 2014; 824: 61-81.
26. Verges B. Pathophysiology of diabetic dyslipidaemia: where are we? // Diabetologia. 2015; 58: 886-899.
27. Waki H. [Regulation of differentiation and hypertrophy of adipocytes and adipokine network by PPARgamma] (in Japanese) / H. Waki, T.Yamauchi, T.Kadowaki // Nippon Rinsho. – 2010. – V. 68, N 2. – P. 210–216.
28. Wu JH, Micha R, Imamura F, et al. Omega-3 fatty acids and incident type 2 diabetes: a systematic review and meta-analysis // Br. J. Nutr. 2012; 107 (2): S214-227.
29. Xu X, Mishra GD, Dobson AJ, Jones M. Progression of diabetes, heart disease, and stroke multimorbidity in middle-aged women: A 20-year cohort study // PLoS Med. 2018; 15 (3): e1002516.
30. Yi L-Z, He J, Liang Y-Z, et al. Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDA / // FEBS Letters. 2006; 580 (30): 6837-6845.
31. Yuan K., Konga H., Guan Y. [et al.] A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile // J. Chromatogr. B. 2007; 850 (1-2): 236-240.